A Geometric Approach to Standard Monomial Theory
نویسنده
چکیده
We obtain a geometric construction of a “standard monomial basis” for the homogeneous coordinate ring associated with any ample line bundle on any flag variety. This basis is compatible with Schubert varieties, opposite Schubert varieties, and unions of intersections of these varieties. Our approach relies on vanishing theorems and a degeneration of the diagonal; it also yields a standard monomial basis for the multi–homogeneous coordinate rings of flag varieties of classical type.
منابع مشابه
Geometric Programming Problem with Trapezoidal Fuzzy Variables
Nowadays Geometric Programming (GP) problem is a very popular problem in many fields. Each type of Fuzzy Geometric Programming (FGP) problem has its own solution. Sometimes we need to use the ranking function to change some part of GP to the linear one. In this paper, first, we propose a method to solve multi-objective geometric programming problem with trapezoidal fuzzy variables; then we use ...
متن کاملA representation for some groups, a geometric approach
In the present paper, we are going to use geometric and topological concepts, entities and properties of the integral curves of linear vector fields, and the theory of differential equations, to establish a representation for some groups on $R^{n} (ngeq 1)$. Among other things, we investigate the surjectivity and faithfulness of the representation. At the end, we give some app...
متن کاملMonomial Irreducible sln-Modules
In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.
متن کاملHilbert functions of points on Schubert varieties in orthogonal Grassmannians
Given a point on a Schubert variety in an orthogonal Grassmannian, we compute the multiplicity, more generally the Hilbert function. We first translate the problem from geometry to combinatorics by applying standard monomial theory. The solution of the resulting combinatorial problem forms the bulk of the paper. This approach has been followed earlier to solve the same problem for Grassmannians...
متن کاملDesign and Analysis of Semi-Empirical Model Parameters for Short-Channel CMOS Devices
Recently analog circuit designers are interested in structured optimization techniques to automate the process of CMOS circuit design. Geometric programming, which makes use of monomial and posynomial expressions to model MOSFET parameters, represents one such approach. The extent of accuracy in finding a global optimal solution using this approach depends on the formulation of circuit and devi...
متن کامل